If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-18x=81=0
We move all terms to the left:
x^2-18x-(81)=0
a = 1; b = -18; c = -81;
Δ = b2-4ac
Δ = -182-4·1·(-81)
Δ = 648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{648}=\sqrt{324*2}=\sqrt{324}*\sqrt{2}=18\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18\sqrt{2}}{2*1}=\frac{18-18\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18\sqrt{2}}{2*1}=\frac{18+18\sqrt{2}}{2} $
| 31b^2+87b-18=3b+b^2 | | 1/3x+6=2/3x+10 | | 4x-5=8x+35 | | P=35+18n | | xx343=98 | | 3n+2(1=4n) | | 2x^2=7x=-8 | | F(11)=2x+3 | | 3b1^2+87b-18=3b+b^2 | | -4(3x+6)=5x+2 | | 7/2x+1/2x=51/2x+9/2x | | x=3+0.25/0.5 | | 0.8x+6=0.2x+2.4 | | 6w+5=8w+25 | | 7x/8=27 | | v^2-11v-8=-4v-8 | | 12x+8=13x+5 | | 5.25=-0.5x+7 | | 8/n=5 | | 8=7.2+1x | | 4m-8=10m+10 | | -x+18=9 | | 101+13x=133 | | 3y-3=6(y-5) | | 63=x+2x+(2x-5) | | 4x=5=45 | | -8(v-3)=-6v+32 | | y^2+2y-29=51 | | 2(x+6)=3(x+9) | | 8x+6)−(7x+9)= | | y+88=-10 | | A=1/43.14d^2 |